Pitot tube Type 1

Pitot tube Type \mathbf{I} with $\mathbf{T C} \mathbf{K}$

Pitot tube with ellipsoidal head.
An intake for total pressure and 6 holes for static pressure.
Sheathed thermocouple K probe integrated, with connection cable length $1,5 \mathrm{~m}$. Body made of stainless steel.

Presentation

KIMO offers a wide range of high-quality and accurate Pitot tubes, as per the AFNOR NFX 10-112 norm.

These Pitot tulues, when being connected to a differential column / or needle / or electronical manometer, can measure the dynamic pressure of a moving fluid in a duct, and then can deduct its air velocity in m / s and its airflow in $\mathrm{m} 3 / \mathrm{h}$.

These Pitot tubes are used in HVAC field, vacuum cleaning and pneumatical transport. They are mainly dedicated to measure hot and particle-charged air, and also high air velocity.

..AFNOR NFX10-112. Annex 4 dated 14.9.77. This norm meets the requirements of the International Norm ISO 3966. NPL curved with ellipsoidal head $1,0015 \pm 0,01$
Better than 1%, for $a \pm 10^{\circ}$ alignment to the fluid flow.
stainless steel 316 L
from 0 to $600^{\circ} \mathrm{C}$ in standard and up to $1000^{\circ} \mathrm{C}$

Norm.

Model.
Coefficient.
Accuracy.

Quality
Operating temperature
in option (except $\varnothing 3 \mathrm{~mm}$).

> - The extent error of an air velocity or airflow measurement with a KIMO Pitot tube remains inferior to 2%, when being carried out as per the NFX10-112 norm.
> - It is recommended to carry out a calibration of the Pitot tube, in order to determine its exact coefficient.
\square

Pitot tube with ellipsoidal head.
An intake for total pressure and 6 holes for static pressure.
Body made of stainless steel.

Features

Dimensions

	A	B	ØC	D	E	F	R
Pitot tube Ø $\mathbf{3 ~ m m}$	17	32	10	30	25	48	9
Pitot tube Ø 6 mm	25	40	10	45	48	96	18
Pitot tube Ø $8 \mathbf{m m}$	25	40	10	45	64	128	24
Pitot tube Ø $\mathbf{1 2} \mathrm{mm}$	25	50	16	60	96	192	36
Pitot tube Ø $\mathbf{1 4} \mathrm{mm}$	25	50	16	60	112	224	42

Ranges

Pitot tube Type \mathbf{L}

Diameter	Reference	Length
$\varnothing 3 \mathrm{~mm}$	TPL-03-100	100 mm
	TPL-03-200	200 mm
	TPL-03-300	300 mm
$\varnothing 6 \mathrm{~mm}$	TPL-06-300	300 mm
	TPL-06-500	500 mm
	TPL-06-800	800 mm
$\varnothing 8 \mathrm{~mm}$	TPL-08-1000	1000 mm
	TPL-08-1250	1250 mm
$\varnothing 12 \mathrm{~mm}$	TPL-12-1500	1500 mm
	TPL-12-2000	2000 mm
$\varnothing 14 \mathrm{~mm}$	TPL-14-2500	2500 mm
	TPL-14-3000	3000 mm

Pitot tube Type \mathbf{I} with TC K

Diameter	Reference	Length
$\varnothing 3 \mathrm{~mm}$	TPL-03-100-T	100 mm
	TPL-03-200-T	200 mm
	TPL-03-300-T	300 mm
$\varnothing 6 \mathrm{~mm}$	TPL-06-300-T	300 mm
	TPL-06-500-T	500 mm
	TPL-06-800-T	800 mm
$\varnothing 8 \mathrm{~mm}$	TPL-08-1000-T	1000 mm
	TPL-08-1250-T	1250 mm
$\varnothing 12 \mathrm{~mm}$	TPL-12-1500-T	1500 mm
	TPL-12-2000-T	2000 mm
$\varnothing 14 \mathrm{~mm}$	TPL-14-2500-T	2500 mm
	TPL-14-3000-T	3000 mm

Operating

The Pitot tube must be introduced perpendicularly into the duct, in several points pre-determined (see table "location of measuring points").
The head (ending with an ellipsoidal nose) must be maintained parallel and facing the flow.
The total pressure (+) catched by the nose, is connected to the + of the manometer
The static pressure $(-)$ catched by the holes of the head, is connected to the - of the manometer.
The connection cable of the thermocouple K probe is connected to the thermocouple K inlet of the manometer (only on the Pitot type I with TC K).

Then, the instrument can display the dynamic pressure, also named "velocity pressure".
The dynamic pressure corresponds to the difference between the total pressure and the static pressure : $\mathrm{Pd}=\mathrm{Pt}-\mathrm{Ps}$

Schema

\Rightarrow Total pressure (Pt)
\Rightarrow Static pressure (Ps
Dynamic pressure $=\mathrm{Pt}-\mathrm{Ps}$

Example :

The manometer model MP200 directly displays the velocity in m / s.

Location of measuring points

With the dynamic pressure in $\mathrm{mm}_{2} \mathrm{O}$ or in Pa , we can calculate the air velocity in m / s, with the simplified BERNOULLI formula :

> V in m / s à $20^{\circ} \mathrm{C}: 1,291 \mathrm{Pd}$ in Pa
> or
\mathbf{V} in $\mathrm{m} / \mathrm{s}: \mathbf{4 , 0 5} \triangle \mathbf{P}$ en mm CE
Formula to get the velocity,
with temperature balancing of the airflow :
\mathbf{V} in $\mathrm{m} / \mathrm{s}=K x \quad \frac{574,2 \Theta+156842,77}{\text { Po }} \times \Delta \mathbf{P}$ in Pa

With

$P_{0}=$ barometric pressure in Pa
$\theta=$ temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{K}=$ coefficient of the Pitot tube
－Connection glands made of nickel plated brass（to install the Pitot tube in a fixed location）
－Clamp made of stainless steel and cast iron
－Sliding connections with nipple，made of stainless steel of Teflon

－Extension cable for thermocouple K class 1 ：
－Rubber sealing caps ：come in a 10 －unit bag
－Caps ：come in a 10 －unit bag
－Graduation（mm）red－marked on the shaft
－Tubes

－Straight Pitot tuhe type \mathbf{I} and type \mathbf{L} with TC K ：
You can directly make the measurements by plunging this tube into the air duct．
Diameters and dimensions ：same as the Pitot tube NPL curved．

Feel free to contact KIMO for any special case，any special manufacturing．

